Cucun Sutinah(1*)

(1) IKIP Siliwangi
(*) Corresponding Author


Penelitian ini bertujuan untuk mengetahui pengaruh implementasi pembelajaran hands-on dan virtual lab terhadap pemahaman konsep dan berpikir kritis siswa pada materi perpindahan kalor. Penelitian menggunakan  metode kuasi experimental dengan desain pretest-postest control group design without randomization. Sampel penelitian yaitu 64 siswa kelas V di salah satu sekolah dasar negeri di Kota Bandung yang dipilih dengan teknik purposive sampling. Instrumen yang digunakan yaitu tes two-tier pemahaman konsep dan tes uraian berpikir kritis. Kelompok eksperimen menerapkan pembelajaran hands-on dan virtual lab, sedangkan kelompok kontrol menerapkan pembelajaran hands-on dan video. Hasil penelitian menunjukkan bahwa terdapat perbedaan peningkatan pemahaman konsep dan berpikir kritis yang signifikan antara kelas ekperimen dan kelas kontrol yang dilihat dari uji anova N-gain dengan sig.= 0,00 < α=0,05. Kelas eksperimen memiliki rata-rata N-gain pemahaman konsep 0,74 lebih tinggi dari kelas kontrol yaitu 0,60. Begitu pula pada kemampuan berpikir kritis, rata-rata N-gain kelas eksperimen sebesar 0,60 lebih besar dibandingkan kelas kontrol yaitu sebesar 0,44. Dengan demikian dapat disimpulkan bahwa pembelajaran hands-on dan virtual lab memberikan pengaruh yang lebih tinggi terhadap pemahaman konsep dan berpikir kritis siswa dibandingkan pembelajaran hands-on dan video.


hands-on lab dan virtual lab, pemahaman konsep, berpikir kritis

Full Text:



Abdullah, S. S. (2016). Transforming science teaching environment for the 21st century primary school pupils. Malaysian Online Journal of Educational Technology, 4(4), 68–76.

Abdurrahman, A., Setyaningsih, C. A., & Jalmo, T. (2019). Implementating multiple representation-based worksheet to develop critical thinking skills. Journal of Turkish Science Education, 16(1), 138–155.

Andayani, Y., Hadisaputra, S., & Hasnawati, H. (2018). Analysis of the level of conceptual understanding. Journal of Physics: Conference Series, 1095(1).

Arista, F. S., & Kuswanto, H. (2018). Virtual physics laboratory application based on the android smartphone to improve learning independence and conceptual understanding. International Journal of Instruction, 11(1), 1–16.

Bao, L., & Koenig, K. (2019). Physics education research for 21st century learning. Disciplinary and Interdisciplinary Science Education Research, 1(1), 1–12.

Buber, A., & Coban, G. U. (2017). The effects of learning activities based on argumentation on conceptual understanding of 7th graders about “force and motion” unit and establishing thinking friendly classroom environment. European Journal of Educational Research, 6(3), 367–384.

Burkett, V. C., & Smith, C. (2016). Simulated vs. hands-on laboratory position paper. Electronic Journal of Science Education, 20(9).

Carvalho. et al. (2015). Critical thinking, real life problems and feedback in the sciences classroom. Journal of Turkish Science Education, 12(2), 21–31.

Croner, P. (2003). Developing critical thinking skills through the use of guided laboratory activities. Science Education Review, 2(2), 1–13.

Demiral, Ü., & Çepni, S. (2018a). Examining argumentation skills of preservice science teachers in terms of their critical thinking and content knowledge levels: an example using GMOs. Journal of Turkish Science Education, 15(03).

Demiral, Ü., & Çepni, S. (2018b). Examining argumentation skills of preservice science teachers in terms of their critical thinking and content knowledge levels: An example using GMOs. Journal of Turkish Science Education, 15(3), 128–151.

Demircioğlu, G., & Çağatay, G. (2014). Effect of laboratory activities based on 5e model of constructivist approach on 9th grade students’ understanding of solution chemistry. Procedia - Social and Behavioral Sciences, Vol. 116, pp. 3120–3124.

Demircioglu, S., & Selcuk, G. S. (2016). The effect of the case-based learning method on high school physics students ’ conceptual understanding of the unit on energy. Asia Pacific Forum on Science Learning and Teaching, 17(2), 1–25. al. (2016). Effects of in-class hands-on laboratories in a large enrollment, multiple section blended linear circuits course. Advances in Engineering Education, 5(3), 1–27.

Gall, M. D., Gall, J. P., & Borg, W. R. (2010). Applying Educational Research. Boston: Pearson Education.

Hırça, N. (2012). The influence of hands on physics experiments on scientific process skills according to prospective teachers’ experiences. European J Of Physics Education, 4(1), 1–9. Retrieved from

Irwanto. et al. (2019). Using inquiry-based laboratory instruction to improve critical thinking and scientific process skills among preservice elementary teachers. Eurasian Journal of Educational Research, 2019(80), 151–170. al. (2019). Developing IRT-based physics critical thinking skill test: A CAT to answer 21st century challenge. International Journal of Instruction, 12(4), 267–280.

Kan’An, A. (2018). The relationship between Jordanian students’ 21st century skills (Cs21) and academic achievement in science. Journal of Turkish Science Education, 15(2), 82–94.

Keller, H., & Keller, E. (2005). Making real virtual labs. Science Education Review, 4(1), 2–11.

Macanas, G. A., & Rogayan, D. V. (2019). Enhancing elementary pupils’ conceptual understanding on matter through sci-vestigative pedagogical strategy (SPS). Participatory Educational Research, 6(2), 206–220.

Mataka, L., & Taibu, R. (2020). A multistep inquiry approach to improve pre-service elementary teachers’ conceptual understanding. International Journal of Research in Education and Science, 6(1), 86–99.

Moosvi, F., Reinsberg, S. A., & Rieger, G. W. (2019). Can a hands-on physics project lab be delivered effectively as a distance lab? International Review of Research in Open and Distance Learning, 20(1), 22–42.

Mutambara, L. H. N., Tendere, J., & Chagwiza, C. J. (2020). Exploring the conceptual understanding of the quadratic function concept in teachers’ colleges in Zimbabwe. Eurasia Journal of Mathematics, Science and Technology Education, 16(2), 1–17.

Ozdemir, E., Coramik, M., & Urek, H. (2020). Determination of conceptual understanding levels related to optics concepts : the case of opticianry. International Journal of Education in Mathematics, Science and Technology, 8(1), 53–64.

Saglam-arslan, A., & Devecioglu, Y. (2010). Student teachers ’ levels of understanding and model of understanding about Newton ’ s laws of motion. Asia-Pacific Forum on Science Learning and Teaching, 11(1), 1–20. al. (2016). Comparing physical, virtual, and hybrid flipped labs for general education biology. Journal of Asynchronous Learning Network, 20(3), 228–243.

Sukaesih, S., & Sutrisno. (2016). Preface: international conference on recent trends in physics (ICRTP 2016). Journal of Physics: Conference Series, 755(1), 1–8.

Tasoğlu, A. K., & Bakaç, M. (2014). The effect of problem based learning approach on conceptual understanding in teaching of magnetism topics. Eurasian Journal of Physics and Chemistry Education, 6(2), 110–122.

Wangdi, D., Kanthang, P., & Precharattana, M. (2017). Development of a hands-on model embedded with guided inquiry laboratory to enhance students’ understanding of law of mechanical energy conservation. Asia-Pacific Forum on Science Learning and Teaching, 18(2), 1–27.

Widiyatmoko, A. (2018). The Effectiveness of simulation in science learning on conceptual understanding: A literature review. Journal of International Development and Cooperation, 24(1・2), 35–43.

Wulandari, A. Y. R. (2018). Correlation between critical thinking and conceptual understanding of student’s learning outcome in mechanics concept. AIP Conference Proceedings, 2014.


Article Metrics

Abstract view : 47 times
PDF - 22 times


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.
View My Stats