Analysis of Gen Z Preferences in Improving English Proficiency using Machine Learning
Abstract
This study analyzes Generation Z (Gen Z) preferences in enhancing English proficiency using machine learning with the Random Forest algorithm. The analysis aims to determine how accurately Random Forest can predict or classify models. The dataset contains three classes: “Applications,” “Entertainment_Media,” and “Tutoring.” Data collected was processed during the pre-processing stage. With this dataset, the model was trained and identified the most influential features on model performance: factors, media, learning duration, understanding, and motivation. The model achieved an accuracy of 62% with hyperparameter tuning. This research aims to contribute to the development of more personalized learning methods for Gen Z.
References
Abubakar, M. A., Muliadi, M., Farmadi, A., Herteno, R., & Ramadhani, R. (2023). Random Forest Dengan Random Search Terhadap Ketidakseimbangan Kelas Pada Prediksi Gagal Jantung. Jurnal Informatika, 10(1), 13-18.
Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC genomics, 21, 1-13.
Ferrer, L. (2022). Analysis and comparison of classification metrics. arXiv preprint arXiv:2209.05355.
Grandini, M., Bagli, E., & Visani, G. (2020). Metrics for multi-class classification: an overview. arXiv preprint arXiv:2008.05756.
Hermawan, B. M., Hakim, M. A., Arifin, R., & Puspitasari, N. (2024, December). Pemanfaatan Artificial Intellegence, Khususnya Mechine Learning dan Deep Learning System dalam Pendidikan. In Prosiding Seminar Nasional Amikom Surakarta (Vol. 2, pp. 345-354).
Indra, D., Hayati, L. N., Daris, M. A., As' ad, I., & Mansyur, U. (2024). Penerapan Metode Random Forest dalam Klasifikasi Huruf BISINDO dengan Menggunakan Ekstraksi Fitur Warna dan Bentuk. Komputika: Jurnal Sistem Komputer, 13(1), 29-40.
Liu, C. B., Chamberlain, B. P., Little, D. A., & Cardoso, Â. (2017). Generalising random forest parameter optimisation to include stability and cost. In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part III 10 (pp. 102-113). Springer International Publishing.
Owoc, M. L., Sawicka, A., & Weichbroth, P. (2019, August). Artificial intelligence technologies in education: benefits, challenges and strategies of implementation. In IFIP international workshop on artificial intelligence for knowledge management (pp. 37-58). Cham: Springer International Publishing.
Pratondo, A., & Bramantoro, A. (2022). Classification of Zophobas morio and Tenebrio molitor using transfer learning. PeerJ Computer Science, 8, e884.
Pratondo, A., & Novianty, A. (2022, December). Comparison of wood classification using machine learning. In 2022 IEEE 10th Conference on Systems, Process & Control (ICSPC) (pp. 308-312). IEEE.
Pratondo, A., Kurniawan, A. P., Eriyadi, M., Prasetyanto, F., Rahayu, D. P., & Akbar, M. D. (2023, August). Prediction of payment modes for online taxi users using machine learning. In 2023 3rd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS) (pp. 411-415). IEEE.
Probst, P., & Boulesteix, A. L. (2018). To tune or not to tune the number of trees in random forest. Journal of Machine Learning Research, 18(181), 1-18.
Probst, P., Wright, M. N., & Boulesteix, A. L. (2019). Hyperparameters and tuning strategies for random forest. Wiley Interdisciplinary Reviews: data mining and knowledge discovery, 9(3), e1301.
Rizky, M. H., Faisal, M. R., Budiman, I., Kartini, D., & Abadi, F. (2024). Effect of Hyperparameter Tuning Using Random Search on Tree-Based Classification Algorithm for Software Defect Prediction. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 18(1), 95-106.
Roihan, A., Sunarya, P. A., & Rafika, A. S. (2020). Pemanfaatan machine learning dalam berbagai bidang. Jurnal Khatulistiwa Informatika, 5(1), 490845.
Saito, T., & Rehmsmeier, M. (2015). The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PloS one, 10(3), e0118432.
Sari, L., & Lestari, Z. (2019, February). Meningkatkan kemampuan berbicara bahasa Inggris siswa dalam menghadapi era revolusi 4.0. In Prosiding Seminar Nasional Program Pascasarjana Universitas PGRI Palembang.
Sari, M. N., Ningsih, P. E. A., Pitri, N., Susmita, N., & Fazira, S. (2024). Pentingnya Penguasaan Bahasa Bagi Gen Z. Jurnal Abdimas Adpi Sosial dan Humaniora, 5(3), 1-7.
Siregar, D. R., & Wahyuni, N. D. (2022). Urgensi penguasaan bahasa Inggris dalam menghadapi dunia kerja global. Jurnal Pendidikan dan Konseling, 4(3), 155–162.
Sucianingtyas, R., Falistya, L. R., Pujiana, S., Prayogi, A., & Laksana, S. D. (2025). Telaah Ragam Artificial Inteligence (AI) Dalam Pendidikan. Madani: Jurnal Ilmiah Multidisiplin, 3(2), 232-243.
Tharwat, A. (2021). Classification assessment methods. Applied computing and informatics, 17(1), 168-192.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.